35 research outputs found

    An Energy Management of Light Electric Vehicle

    Get PDF
    Oil depletion, global warming and CO2 gas emissions have become a concern and have motivated the development of an efficient and extendable energy management system (EMS) using renewable energy sources for light vehicles. In this paper, a state-based logic control algorithm is developed for a multi-source EMS for light electric vehicle, i.e.,electric scooters. The multiple sources of energy, such as a battery, fuel cell (FC), and super-capacitor (SC), EMS and power controller are designed and modeled using MATLAB. The developed control strategies continuously support the EMS of the multiple sources of energy for a scooter under normal load conditions. The performance of the proposed system is analyzed and compared with that of the ECE-47 test drive cycle in terms of vehicle speed and load power. The results show that the designed vehicle’s speed and load power closely match those of the ECE-47 test driving cycle under normal conditions. This study results suggest that the proposed control algorithm provides an efficient and feasible EMS for light electric vehicles

    Renewable Energy Technologies and Hybrid Electric Vehicle Challenges

    Get PDF
    This paper introduces the utilization of selected renewable energy technologies such as solar cell, battery, proton exchange membrane (PEM) fuel cell (FC) and super-capacitors (SCs) in the electrical vehicle industry. Combination of multiple energy resources is imperative to balance the different characteristic of each resource. Concomitantly, the need of an efficient energy management system arises within the industry. Thus, existing system from past and present undergoing research papers are summarized to give a compact overview on the technology and know-how technique to readers

    An Electronic Nose for Reliable Measurement and Correct Classification of Beverages

    Get PDF
    This paper reports the design of an electronic nose (E-nose) prototype for reliable measurement and correct classification of beverages. The prototype was developed and fabricated in the laboratory using commercially available metal oxide gas sensors and a temperature sensor. The repeatability, reproducibility and discriminative ability of the developed E-nose prototype were tested on odors emanating from different beverages such as blackcurrant juice, mango juice and orange juice, respectively. Repeated measurements of three beverages showed very high correlation (r > 0.97) between the same beverages to verify the repeatability. The prototype also produced highly correlated patterns (r > 0.97) in the measurement of beverages using different sensor batches to verify its reproducibility. The E-nose prototype also possessed good discriminative ability whereby it was able to produce different patterns for different beverages, different milk heat treatments (ultra high temperature, pasteurization) and fresh and spoiled milks. The discriminative ability of the E-nose was evaluated using Principal Component Analysis and a Multi Layer Perception Neural Network, with both methods showing good classification results

    System Interface for an Integrated Intelligent Safety System (ISS) for Vehicle Applications

    Get PDF
    This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS) that includes an airbag deployment decision system (ADDS) and a tire pressure monitoring system (TPMS). A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications

    Vision-Based Traffic Sign Detection and Recognition Systems: Current Trends and Challenges

    Get PDF
    The automatic traffic sign detection and recognition (TSDR) system is very important research in the development of advanced driver assistance systems (ADAS). Investigations on vision-based TSDR have received substantial interest in the research community, which is mainly motivated by three factors, which are detection, tracking and classification. During the last decade, a substantial number of techniques have been reported for TSDR. This paper provides a comprehensive survey on traffic sign detection, tracking and classification. The details of algorithms, methods and their specifications on detection, tracking and classification are investigated and summarized in the tables along with the corresponding key references. A comparative study on each section has been provided to evaluate the TSDR data, performance metrics and their availability. Current issues and challenges of the existing technologies are illustrated with brief suggestions and a discussion on the progress of driver assistance system research in the future. This review will hopefully lead to increasing efforts towards the development of future vision-based TSDR system. Document type: Articl

    The amber-colored liquid: a review on the color standards, methods of detection, issues and recommendations

    Get PDF
    For most natural or naturally derived liquid products, their colour reflects on their quality and occasionally affects customer preferences. To date, there are a few subjective and objective methods for colour measurement which are currently utilized by various industries. Researchers are also improving these methods and inventing new methods, as colour is proven to have the ability to provide various information on the condition and quality of the liquid. However, a review on the methods, especially for amber-coloured liquid, has not been conducted yet. This paper presents a comprehensive review on the subjective and objective methods for colour measurement of amber-coloured liquids. The pros and cons of the measurement methods, the effects of the colour on customer preferences, and the international industry standards on colour measurements are reviewed and discussed. In addition, this study elaborates on the issues and challenges related to the colour measurement techniques as well as recommendations for future research. This review demonstrates that the existing colour measurement technique can determine the colour according to the standards and colour scales. However, the efforts toward minimizing the complexity of the hardware while maximizing the signal processing through advanced computation are still lacking. Therefore, through this critical review, this review can hopefully intensify the efforts toward finding an optimized method or technique for colour measurement of liquids and thus expedite the development of a portable device that can measure colour accurately
    corecore